1. Fully-Configured Deep Learning VM in Python (VirtualBox & VMware)

Fully-Configured Deep Learning VM in Python (VirtualBox & VMware)

Hello Buddies,

Often when we start working on any new technology, the most common challenge that we face is ‘How can i not waste time setting up my environment but directly working on the technology?
If you aren’t a Linux user, it can be really hard to figure out how to get a system fully configured with all the required machine learning libraries and tools like TensorFlow, Theano, Keras, OpenCV, and dlib. A lot of people get stuck while installing everything and give up before ever getting to play around with any code. That’s a shame!

I don’t think there any reason why it should be so hard to try things out when we are in 2017. To make it simple for anyone to play around with machine learning, great guy (Adam G) has put together a simple virtual machine image that you can download and run without any complicated installation steps.
The virtual machine image has Ubuntu Linux Desktop 16.04 LTS 64-bit pre-installed with the following machine learning tools:

Python 3.5
OpenCV 3.2 with Python 3 bindings
dlib 19.4 with Python 3 bindings
TensorFlow 1.0 for Python 3
Keras 2.0 for Python 3
face_recognition for Python 3 (for playing around with face recognition)
PyCharm Community Edition already set up and ready to go for all these libraries Convenient code examples ready to run, right on the desktop!
Even the webcam is preconfigured to work inside the Linux VM for OpenCV / face_recognition examples (as long as you set up your webcam to be accessible in the VMware settings).

Note: This is a desktop VM meant for educational purposes, not a VM meant for use on a server. Due to licensing and installation complications, there’s no GPU acceleration / CUDA support provided. So you don’t need an Nvidia GPU to try this out, but it also won’t take advantage of a GPU if you have one.

How to download and run the Deep Learning VM in 3 simple steps:

  1. Download the 5.4GB VM .tar.gz file for VMware from Internet Archive. You can choose between a normal direct download or using bittorrent. Uncompress the file when it’s complete. An alternate version of this VM for VirtualBox is also available, but the performance in VirtualBox can be pretty bad. So don’t the VirtualBox version unless you don’t have any other choice.
  2. You need VMware to run this virtual machine image. If you don’t already have VMware installed, download the appropriate version for your operating system. Windows or Linux users should download the free VMware Workstation Player. Mac users can grab the free VMWare Fusion 30-day demo.
  3. Launch VMware, open the VM image and run it! Linux should boot right up. See below for the user account password.


  1. The username is ‘deeplearning’ and the password is ‘deeplearning’. You might want to change the password after you log in.
  2. This is a 64-bit virtual machine. You’ll need a 64-bit CPU.
  3. If you launch PyCharm Community Edition from the left sidebar, there are several pre-created projects you can open. Try the face_recognition, OpenCV or Keras projects and run some of the demos. Right-click on the code window and choose “Run” to run the current file in PyCharm.
  4. If you configure your webcam in VMware settings, you can access your webcam from inside the Linux virtual machine! Try running one of the face_recognition webcam demos after setting it up.

Enjoy !!

Easiest way to install OpenCV on Ubuntu 16.04 (Python + C++ Support)
Installation of OpenCV 3.3/3.2/3.0 and Python 2.7 on Windows 10 (64-bit)

Leave a Reply

Your email address will not be published. Required fields are marked *

Welcome to OpenCV World !! Come as a Guest, stay as a Family