Simple Digit Recognition aka Optical Character Recognition(OCR) in OpenCV-C++
Hello,
As an extension to my previous tutorial of “Simple Digit Recognition aka Optical Character Recognition(OCR) in OpenCV-Python” , in this tutorial, we’ll cover the C++ part of the code.
The procedure will remain same for both languages.
Here is the Code for creating sample and Label data:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #Make sure to provide correct includes //Process image to extract contour Mat thr,gray,con; Mat src=imread("digit.png",1); cvtColor(src,gray,CV_BGR2GRAY); threshold(gray,thr,200,255,THRESH_BINARY_INV); //Threshold to find contour thr.copyTo(con); // Create sample and label data vector< vector <Point> > contours; // Vector for storing contour vector< Vec4i > hierarchy; Mat sample; Mat response_array; findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); //Find contour for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through first hierarchy level contours { Rect r= boundingRect(contours[i]); //Find bounding rect for each contour rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,0,255),2,8,0); Mat ROI = thr(r); //Crop the image Mat tmp1, tmp2; resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR ); //resize to 10X10 tmp1.convertTo(tmp2,CV_32FC1); //convert to float sample.push_back(tmp2.reshape(1,1)); // Store sample data imshow("src",src); int c=waitKey(0); // Read corresponding label for contour from keyoard c-=0x30; // Convert ascii to intiger value response_array.push_back(c); // Store label to a mat rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,255,0),2,8,0); } // Store the data to file Mat response,tmp; tmp=response_array.reshape(1,1); //make continuous tmp.convertTo(response,CV_32FC1); // Convert to float FileStorage Data("TrainingData.yml",FileStorage::WRITE); // Store the sample data in a file Data << "data" << sample; Data.release(); FileStorage Label("LabelData.yml",FileStorage::WRITE); // Store the label data in a file Label << "label" << response; Label.release(); cout<<"Training and Label data created successfully....!! "<<endl; imshow("src",src); waitKey(); |
Code for training and testing
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | Mat thr,gray,con; Mat thr,gray,con; Mat src=imread("dig.png",1); cvtColor(src,gray,CV_BGR2GRAY); threshold(gray,thr,200,255,THRESH_BINARY_INV); // Threshold to create input thr.copyTo(con); // Read stored sample and label for training Mat sample; Mat response,tmp; FileStorage Data("TrainingData.yml",FileStorage::READ); // Read traing data to a Mat Data["data"] >> sample; Data.release(); FileStorage Label("LabelData.yml",FileStorage::READ); // Read label data to a Mat Label["label"] >> response; Label.release(); KNearest knn; knn.train(sample,response); // Train with sample and responses cout<<"Training compleated.....!!"<<endl; vector< vector <Point> > contours; // Vector for storing contour vector< Vec4i > hierarchy; //Create input sample by contour finding and cropping findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); Mat dst(src.rows,src.cols,CV_8UC3,Scalar::all(0)); for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through each contour for first hierarchy level . { Rect r= boundingRect(contours[i]); Mat ROI = thr(r); Mat tmp1, tmp2; resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR ); tmp1.convertTo(tmp2,CV_32FC1); float p=knn.find_nearest(tmp2.reshape(1,1), 1); char name[4]; sprintf(name,"%d",(int)p); putText( dst,name,Point(r.x,r.y+r.height) ,0,1, Scalar(0, 255, 0), 2, 8 ); } imshow("src",src); imshow("dst",dst); imwrite("dest.jpg",dst); waitKey(); |
RESULT:
In the result the dot in the first line is detected as 8 because we haven’t trained our program for dot.
Also I am considering every contour in first hierarchy level as the sample input, user can avoid it by computing the area.